
 1

Template-based generation of streaming accelerators 
from a high level representation 

 Nikolaos Bellas, Sek M. Chai, Malcolm Dwyer, Dan Linzmeier
 Embedded Systems Research, Motorola Labs, 
 (bellas@labs.motorola.com) 

Abstract— Hardware accelerators, used as application-
specific extensions to the computational capabilities of a 
system, are efficient mechanisms to enhance the performance 
and reduce the power dissipation in a System On Chip (SoC). 
These accelerators execute on the computationally critical part 
of the application, and offload computations from the scalar 
processors. In this paper, we present a design automation tool 
that generates accelerators based on a given application 
kernel. The accelerators are processing streaming data, and 
support a programming model which can naturally express a 
large number of embedded applications, and which results in 
efficient and fast hardware implementations. We demonstrate 
the applicability of the tool for architectural space exploration 
for a number of media applications, with results on area, 
throughput, and clock speeds. 

I. INTRODUCTION 
he levels of integration of modern FPGAs have 
advanced to a point where the performance and 

flexibility are sufficient to map all functions of a complex 
SoCs into a single die. FPGA manufacturers have 
embedded fixed functionality cores such as general purpose 
processors, multipliers, multi-ported SRAM memories, and 
DSP slices in order to speed-up commonly used 
applications. At the same time, tool vendors have offered a 
plethora of pre-defined peripherals, fixed IP functions, and 
even synthesizable processor cores for the designer to 
customize the chip. The availability of a tool flow that 
abstracts out the particular hardware structures and presents 
a software-only front end interface to the application 
developer is a necessary step to precipitate the acceptance 
of FPGAs as SoC platforms. Such a tool can be used by a 
larger pool of engineers, and not necessarily experts in 
system architecture and hardware design. Furthermore, an 
architectural automation tool should combine interactive 
architectural exploration, automatic hardware-software 
partition and an efficient mapping of one or multiple kernels 
to the reconfigurable fabric.  

The programming model of this FPGA platform have the 
familiarity of high level programming language and the 
capability to efficiently map compute-intensive kernels onto 
the reconfigurable fabric. Typically, scalar processors are 
reasonably efficient in handling normal conditional code 
with a low degree of instruction and data level parallelism. 
They have been shown to be more efficient than the 
hardware generated by direct code mapping into gates [31]. 
However, scalar processors are very inefficient for high 
throughput, parallelizable code due to limited support of all 

kinds of parallelism (instruction, data, and task). They are 
further limited by the low memory bandwidth due to the 
narrow pipes to the main core.   

 We have developed an automation process which maps 
streaming data flow graphs (sDFG) to accelerators of the 
main scalar core. The streaming programming model 
assumes that the kernels process streams of data with a 
relatively limited lifetime, and deterministic memory access 
pattern. The streaming model decouples the description of 
memory access sequences from the computation within a 
kernel, thus making the customization of each of these two 
components (computation and memory access) easier and 
more re-usable.  

The design space exploration involves an iterative design 
cycle in which Pareto-optimal implementations of a given 
sDFG are produced under user and system constraints. For 
each iteration, a search space iterator instantiates a set of 
parameters that meet the given constraints, then a scheduler 
produces a schedule of operations optimized for throughput, 
and finally an RTL generation back-end tool produces the 
hardware description of the accelerator. Separate hardware 
generation flows produce the computational units based on 
the scheduled sDFG and the stream units based on the 
stream descriptors. Each generated accelerator is 
synthesized and implemented on a Xilinx Virtex-4 FPGA to 
be evaluated in terms of stream throughput, area, and clock 
speed, and later classified as Pareto-optimal or eliminated 
from consideration.  

The contributions of the papers are the following:  
• first, we propose the usage of the streaming paradigm 

(sDFGs) for application acceleration in a SoC-based 
reconfigurable fabric.  

• second, we propose a template-based, automated method 
to perform architectural exploration on the accelerated 
application by evaluating the design space separately for 
the stream unit and the stream computational unit.  

• and third, we explain how these concepts are placed in the 
context of a bus-based SoC design and how the 
accelerators are connected to the rest of the system. 
The rest of the paper is organized as follows: Section II 

gives background information on the streaming 
programming paradigm and explains how it exploits 
technology trends that favor computation over 
communication. Section III details our template-based 
methodology, and section IV presents a set of embedded 
applications and the results of the method on a Xilinx 

T 



 2

Virtex-4 FPGA. Section V gives a summary of previous 
work on the relative areas, and Section VI presents the 
conclusion and future work. 

II. STREAM PROGRAMMING MODEL 

A. Architecture 
The hardware accelerators that are generated by our 

method follow the streaming architectural paradigm. They 
act as filters on input streaming data to generate the output 
streaming data specified by the streaming data flow graphs. 
Stream kernels exhibit a large degree of data and task level 
parallelism, with regular or even statically defined 
communication patterns [1]. 

The regularity of data access and the short lifetime of the 
stream data allow for efficient optimization of both the 
communication and the computational portion of the 
algorithm. Even more importantly, they make possible the 
decoupling of the stream access from the computation and 
their separate optimization. 

 Under this model, memory load/store operations no 
longer need to be scheduled amongst compute operations 
and optimal scheduling of operations now does not depend 
upon memory latencies. With this independence, the 
underlying memory system may be changed or may exhibit 
variable latencies, as with caches, with no effect on the 
computation schedule. 

The decoupled memory access allows data pre-fetching 
to occur during computation. It can be achieved with the 
programmer describing the shape and location of data in 
memory using stream descriptors, described in the next 
section. This decoupling allows the stream units to take 
advantage of available bandwidth to prefetch data before it 
is needed. The architecture becomes dependent on average 
bandwidth of the memory subsystem with less sensitivity to 
the peak latency to access a data element. In addition, the 
architecture benefits from having fewer stalls due to slow 
memory access.  

Deep pipelining allows multiple functional units to be 
chained, reducing the access to large register files to store 
temporary data. This process is achieved with the 
programmer describing the data flow graph of the 
operations to be performed. Each operation is mapped to a 
set of functional units connected with a network. The 

number of functional units is dependent on the number of 
available logic gates, the number of potential parallel 
operations per cycle, and the user performance 
requirements. 

B. Stream Descriptors 
The architecture includes several independent stream 

units to prefetch data from memory and turn streams into 
FIFO queues of stream elements. Additional stream units 
are created to write stream elements into memory. Each unit 
handles all issues regarding loading/storing of data 
including: address calculation, byte alignment, data 
ordering, and memory bus interface.  

Data is transferred though the stream units which are 
programmed using stream descriptors. A stream descriptor 
is represented by the tuple (Type, Start_Address, Stride, 
Span0, Skip0, Span1, Skip1, Size), where: 
• Type indicates the element size in bytes (Type is 0 for 

bytes, 1 for 16-bit half-words, etc.). 
• Start_Address represents the memory address of the first 

stream element. 
• Stride is the spacing, in number of elements, between two 

consecutive stream element. 
• Span0 is the number of elements that are gathered before 

applying the skip0 offset. 
• Skip0 is the offset applied between groups of span0 

elements, after the stride has been applied 
• Span1 is the number of elements that are gathered before 

applying the skip1 offset. 
• Skip1 is the offset applied between groups of span1 

elements, after the stride and the Skip0 have been applied. 
The Stride, Span, Skip, and Type fields define the shape 

of the data stream in memory, while Start_Address define 
the location of the first data element. The grouping and 
order in which data is accessed defines a Stream Record and 
corresponds to the desired alignment for the computation 
kernel. Multidimensional or even non-regular shapes can be 
created by extending the defined semantics of each stream 
descriptor. Figure 1 shows an example of a static memory 
access pattern described by a stream descriptor.  

The stream descriptors and compiler manipulations are 
active research areas. Readers are referred to [1][8] for more 
details. 

C. Stream Computation 
0

2

1

3

4

6

5

7

The streaming paradigm allows the application to exploit 
the large number of functional units that are readily 
available in modern VLSI technologies without taxing the 
communication resources [12]. We are using a “Data-flow 
Graph” (DFG) language to express operations in a machine-
independent manner. A DFG consists of nodes, representing 
basic arithmetic, and logical operations composing the 
vector operation, and directed edges, representing the 
dependency of one operation on the output of a previous 

4 92

2-D Subarray with column-wise access

(Type, SA, Stride, Span[0], Skip[0], Span[1], Skip[1], Size) =
(Byte, 4, 200, 2, -299, 2, -300, 8)

 

Figure 1. Stream descriptors for a memory access pattern 



 3

operation [8]. 
In this DFG language, all dependencies are explicitly 

stated. This simplifies the scheduler’s task of identifying 
dependencies and determining which operations can be 
scheduled in parallel, resulting in schedules that are often 
close to optimal, given the functional unit and interconnect 
limits of the underlying design. 

Each node in the DFG is denoted by a descriptor, which 
specifies:  
• Input operands. The input operands are specified as 

relative references to previous nodes rather than named 
registers. This feature helps eliminate the unnecessary 
contention for named registers as well as the overhead 
associated with register re-naming.  

• The operation to be performed by the node.  
• The minimum precision of its output value. This can be 

derived from the precision of the input operands and from 
the operation performed by the node. However, 
implementations are allowed to use more precision if that 
is easier. 

• The signedness of the output result.  
Unlike the stream unit that accesses data from external 

sources like memory or peripherals, the production and 
consumption of intermediate results is done locally, within 
the accelerator.  

We will use the sDFG of Figure 2 in the rest of the paper 
to illustrate the concepts and trade-offs involved in our 
methodology. This sDFG implements the open 
morphological filter which is the basis of a many image 
processing applications such as edge detection [23]. The 

open filter is a non-linear operation on each pixel located in 
(r,c) and is defined as an erosion e followed by a dilation d 
on a grayscale image I: 

where D1xD2 is the window that defines the filter applied 
on the image pixels. The equivalent C code of the unrolled 
kernel is also shown in Figure 2. 

III. TEMPLATE-BASED HARDWARE GENERATION 
The problem we are addressing in this paper is the 

automatic generation of synthesizable accelerators from the 
streaming representation of Section II. Our approach is to 
select designs from a well-engineered framework, instead of 
generating the given hardware from a generic representation 
of a high level language. We generate highly optimized 
designs at various points at the cost-performance space 
based on the given application, the user requirements, and 
the capabilities of the rest of the system.   

Figure 3 shows the iterative design flow. The main points 
of the tool flow are the following: 
• a common template based on a regular architecture that 

accesses and processes streaming data, 
• an iteration engine that instantiates system parameters that 

meet system and user constraints to initiate the next 
iteration of space search, 

• a scheduler that performs sDFG scheduling and hardware 
allocation based on the parameters set by the iterator, 

255 vld (v1)

vmin

255 vld (v1)

vminvtunnel

vtunnel

vtunnel

vtunnel

vtunnel

vtunnel

vmin

vmin

vmin

vmin

vmin

vmin

vmin

vmin

vmin

vmin

vmin

vmin

vmax vmaxvtunnel

vtunnel

vtunnel

vtunnel

vtunnel

vtunnel

vmax

vmax

vmax

vmax

vmax

vmax

vmax

vmax

vmax

vmax

vmax

vmax

0 0

vst vst

0

255 vld (v1)

vmin vtunnel

vtunnel

vtunnel

vtunnel

vtunnel

vtunnel

vmin

vmin

vmin

vmin

vmin

vmin

vmax vtunnel

vtunnel

vtunnel

vtunnel

vtunnel

vtunnel

vmax

vmax

vmax

vmax

vmax

vmax

vst

 for (i=6; i < N; i++) { 
      min = + ∞ ; 
      for (j=0; j < 6; j++) { 
          if (a[i-j] < min) 
               min = a[i-j]; 
      }    
      b[i] = min; 
      max = -∞ ; 
      for (j=0; j < 6; j++) { 
           if (b[i-j] > max) 
                 max = b[i-j]; 
      }     
     
      c[i] = max; 
 } 

 
Figure 2 The Open sDFG unrolled once and twice, and the C kernel of the Open filter 

)),((),(
)],([),(

)],([),(
2,1

2,1

credcrOpen
jcirIMAXcrd

jcirIMINcre
DjDi

DjDi

=
++=
++=

∈∈

∈∈
 



 4

User requirements
User requirements

System constraints
System constraints

Accelerator template
Accelerator template

Specification
Space

Architectural Iterator
Architectural Iterator

Application specification
(set of sDFGs)

Application specification
(set of sDFGs)

Parameter instantiation
Parameter instantiation

Scheduling and
implementation

specific generation

Scheduling and
implementation

specific generation

High level accelerator
specification

High level accelerator
specification

RTL constructor
RTL constructor

Synthesizable RTL
Synthesizable RTL

Design evaluator
(Synthesis - PAR)

Design evaluator
(Synthesis - PAR)

Library of
components

Library of
components

DFG codeDFG code

sDFG melding
(optional)

sDFG melding
(optional)

Set of sDFGs
Set of sDFGs

Stream descriptor
Stream descriptor

Figure 3 Template-based accelerator generation 

• an RTL constructor engine that produces optimized 
Verilog code for the data path and the stream units, 

• and an evaluation phase that synthesizes and maps the 
designs in FPGA and produces quality metrics such as 
area, and clock speed 
Each of the data path and the stream unit have their own 

acceleration generation process. The rest of the section 
details each one of these engines and their interfaces 

A. Architectural template 
The architectural template consists of two parts: the 

streaming data path and the stream unit (Figure 4). The 
stream unit expands into one or more input and output 
stream modules, and is generated to match the 
characteristics of the stream descriptors, and the 
characteristics of the bus-based system and the streaming 
data path. The data path is generated to execute a given 
sDFG to match user and system constraints in the 
specification space.  

Stream Unit 
The stream unit transfers streams from a system memory 

or peripheral, through a system bus and present them in-
order to the accelerator. It also transfers processed output 
streams back to the memory. 

The stream queue and the alignment unit store the 
incoming stream data and present them to the data path in-
order. The number of storage elements, their size, and their 
interconnect depend on the stream descriptors and the 
requested bandwidth of the data.  

The peak bandwidth for the accelerator depends on the 
schedule of the sDFG as we will discuss later. The size of 
the storage elements matches the size of the stream 

elements, for example it can be one byte for 8-bit pixel data. 
Finally, the interconnect between the storage elements and 
the flow of streaming data between them depends on the 
span and skip of the stream description.  

 As an example, suppose that the sDFG of Figure 2 is 
unrolled twice and is scheduled so that the peak bandwidth 
of the input stream module is two bytes per cycle. Such a 
case arises when, for example, an Open filter is applied to a 
tiled image for edge detection. Under these assumptions, the 
stream queue should have at least two 8-bit pipelined 
registers to meet the bandwidth requirements. There is no 
need for any feedback connections from the head to the tail 
of the queue because the stream elements are not reused. 
The stream unit hardware generator detects this lack of 
reuse by examining the value of the skip0 and skip1 
parameters, which are non-negative.  

As we will examine later, the space iterator may also 
decide to allocate extra registers to the stream queue to 
match the system bus bandwidth capabilities.  For example, 
in the case of an 8-byte PLB bus, the stream queue can have 
8 or more storage elements to exploit the spatial locality of 
the memory accesses.   

The bus line buffer is used to temporarily hold the data 
accessed from the system bus, and filter them to the stream 
queue when there is enough space. Two pointers, head and 
tail, follow the production and consumption of streaming 
elements in the stream queue and produce information on 
the emptiness and the fullness of the queue. By detecting 
cases where the stride is greater than 1, the bus line buffer 
eliminates unnecessary elements before sending the stream 
to the stream queue.   

The address generation unit (AGU) is hardwired to 
generate the memory access pattern of the stream 
descriptors. The number of registers that store internal 
variables (e.g. span_left[i]), their width, the value and size 
of the stream description parameters are some of the 
configuration mechanisms of this unit. 

The AGU aggressively generates addresses for data 
prefetching and sends them to the Address Line Buffer 
module. This module stores the addresses, merges addresses 
that fall within the same bus word (or burst size word in 
case bus burst is enabled), and competes for bus accesses 
with the other stream units. The generated number of 
buffers in the Address Line Buffer matches the average 
latency of the memory and bus systems and the capability of 
the bus to pipeline data accesses. For example, the PLB bus 
used in the Virtex architecture can pipeline up to two read 
accesses to a memory location, and, therefore, an efficient 
Address Line Buffer will have at least two address buffers.  

Finally, the arbiter regulates the access of the stream 
units to the system bus. It uses a round-robin algorithm, and 
its complexity depends on the number of input and output 
streams of the sDFG. 

 
 Data path 

The data path template of Figure 4 is an interconnect of 
reconfigurable functional units that produce and consume 



 5

streaming data, and communicate via reconfigurable links. 
The links are chained at the output of a slice of a functional 
unit, and have a single input and potentially multiple 
outputs. They implement variable delay lines without the 
need of an explicitly addressable register file. The template 
also allow for the usage of a set of named registers that can 
be used by the sDFG to pass values from one sDFG 
iteration to the next and implement cross-iteration 
dependencies, and also to pass parameters to the program. 
Furthermore, the programming model allows for the use of 
accumulators for reduction operations [8].  

The control logic of the data path is distributed and 
spatially close to the corresponding functional unit, 
multiplexer or line queue. This was an explicit design 
decision to avoid creating critical paths due to long wires in 
modern VLSI technologies.   

 The type of the functional units (ALUs, multipliers, 
shifters, etc.), the specific operation performed within a type 
(e.g. only addition and subtraction for an ALU), the width 
of the functional unit, the size and number of storage 
elements of a FIFO, the interconnects between functional 
units (via FIFOs), the bandwidth from and towards the 

stream units are some of the reconfigurable parameters of 
the data path.  

Multiplexer Tree

FU

Streaming Data
C

ontrol

FU
C

ontrol

FU

C
ontrol

Reg

Reg

Constants

ACC

Data alignment

Bus Line Buffer

Stream Queue

Address
 Buffer

Addr 1

Addr 2

Addr 3

Addr 4

V

I

V

V

Arbiter

System Bus (e.g. PLB)

Addr
Merge

AGU

Stream Interface
Template

Data Path
Template  

Figure 4. The accelerator template consists of the Data Path and the Stream Unit templates.  
Different optimizations are deployed in each case. 

The data path requests data-sourcing from the input 
stream module and data-sinking from the output stream 
module. A simple, demand-driven protocol between the two 
modules is used to implement the communication. Stall 
signals from the stream units to the data path allow for a 
less than perfect memory system. A stall signal from any 
stream unit will cause the stall of the accelerator engine.  

The accelerator will compute for as long as valid 
streaming data are coming and not all of the outgoing 
streaming data have been produced. Coupled with each 
input from a stream unit to the data path is a Valid bit that 
notifies when a stream element of data is valid or not. A 
Done signal is asserted when a stream has transferred all of 
its data to the accelerator. 

B. Architectural Iterator 
The iterator selects a set of parameters in the space 

specified by the user and the system. For each one of this 
set of parameters, the tool flow builds an implementation by  

 



 6

 
breaking the task into the implementation of the data path 
and the implementation of the stream unit. 

Scheduling and High Level Implementation 
The scheduler receives as input the sDFG along with the 

user and system constraints (Table 1a and Table 1b) and 
schedules the operation of the sDFG to optimize 
throughput. The scheduler uses modulo scheduling to 
overlap multiple iterations in each cycle and exploits all the 
available parallelism under the resource constraints and data 
dependencies. The outline of the scheduling algorithm is 
given in Figure 5. The output of this stage is a hardware 
representation of the accelerator at a higher specification 
level than an RTL specification. We will omit the 
description of this High level Model (HLM) of the data path 
of the accelerator for brevity.  Figure 5 is the flow graph of 
the scheduling process of the data path. 

A strict lower bound of the initiation interval, called 
Minimum Initiation Interval (MII), is obtained by the 
number of available resources and the loop cross-iteration 
data dependencies [20]. If Rk is the number of resources of 

type k available in the system, and Nk is the number of 
operations that use a functional unit of type k in a loop 
iteration, then the lower bound for the MII is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡

≤≤
k

k
mk

R
N

1max  , where m is the number of available 

types. As an example, the sDFG of Figure 2 requires 14, 16-
bit min/max nodes per iteration. If there is an available ALU 
with 192 bits, then the minimum MII is 2

14
16192

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥

⎤
⎢⎢

⎡  cycles.  

Table 1a. User constraints and example values 

Number of Functional 
Units per Type 

Available bits for 
each FU instance 

Minimum allocation 
slice 

Execution latency for each 
FU 

Pipeline Initiation 
Cycle for each FU 

4 input stream ports (for 
all streams) 
1 ALU unit 
1 Multiplier unit 

192 bits for each ALU 
64 bits for each  
multiplier  

16 bits for ALUs 
32 bits for multipliers 

One cycle for ALUs 
One cycle for multipliers 

One cycle for all FUs 

 

Table 1b. System constraints and example values 

Area (in gates or slices) Peak bus bandwidth Average memory latency Bus pipeline factor 
3000 slices  64 bits/cycle 2-30 cycles 2 pending requests 

Data dependencies that cross iteration boundaries also 
constraint the MII as follows: if there is a cross-iteration 
data dependency between nodes nc of iteration 1 and n1 of 
iteration 2 such that: n1(1)  → n2(1) → … →nc(1) → n1(2), 
the nodes ni of successive iterations should be scheduled at 
least C cycles apart assuming that the latency of each node 
is one cycle. This situation arises when there is a cycle in an 
sDFG, due to a back-edge nc(1) → n1(2). 

In general, the MII is bounded by 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡

Di
Ci

circleimax   for 

each circle in the sDFG. The Ci is the sum of the execution 
latencies of all nodes in the circle, and Di is the sum of all 
iteration distances of edges in the circle. The Open filter of 
Figure 2 has no cycles, and, thus, no cross-iteration 
constraints.  

Compute
MII

sDFG

Unroll sDFG

machine
configuration

Unroll factor

Schedule nodes
for throughput
within the MII

window

Forward
Scheduling

Backward
Scheduling

}

Iteration folding

Schedule
generation

Slice allocation

FU HLM
generation

Delay queue
HLM generation

Control Logic
HLM generation

Accelerator HLM
generation

 
Figure 5. Scheduling and high level model (HLM) 

During scheduling, the interconnects are not counted as 
resources, but rather they are “filled-in” during the 
generation of the HLM. By setting the schedule period 
equal to the MII, the scheduler maximizes the throughput of 
the accelerator, which is the main optimization target of the 
tool flow. Next, the schedule is generated within the MII 
window by first scheduling the nodes from top to bottom 
(forward scheduling) using a greedy approach. In this step, 
the nodes are scheduled immediately when all their parents 
have been scheduled and there exists an available resource 
to execute them.  

Then, a backward scheduling heuristic is used to re-
schedule some of the nodes by scheduling from the step 
MII-1 towards the step 0. This, in effect, “spreads out” the 
nodes within the steady-state period of the schedule and 
distributes the schedule more evenly within the MII steps. 
The net effect of this approach is to reduce the latency 
between successive nodes in the schedule, thereby reducing 
the storage requirements of the line delay queues [20].  



 7

The scheduler needs to only generate code for the steady 
state body of the schedule and not for the prologue and 
epilogue as is often the case in modulo scheduling [26]. 
Each data token that populates the FU inputs, outputs and 
line queues in every clock cycle is tagged with a valid bit. 
An operation produces valid output data only if both input 
data are valid. A source operation (like a vld) produces data 
with valid bits when the data are available, and a sink 
operation (like a vst) accepts data only when they are valid. 

For example, the schedule of the vector-add operation of 
two N-element vectors of Figure 6 can be expressed by a 
single word that combines all four operations. The colored 
operations process invalid data and are don’t cares for a 
particular cycle.  The valid bits ensure the correct execution 
of the code in the first two and the last two cycles of the 
schedule.  

Next, the tool flow binds the operation nodes to the 
functional unit slices, and generates the delay links at the 
output of each slice to store the streaming outputs as they 
are produced by the FUs.  Finally, the control logic for each 
one of the data path elements is produced based on the 
schedule. The back end portion of the scheduler applies 
bitwidth optimizations to the operations to reduce the area 
and increase performance.  

 

The stream unit design is generated based on user and 
system constraints, as shown earlier in Table 1a and Table 
1b. The size and number of buffer elements are chosen to 
meet the performance of the bus as well as the target 
performance of the generated data path. For example, the 
number of bus address queue elements, used to store 
pending addresses, is set to at least the bus pipeline factor so 
that bus transfers are sustained without stalling the data 

path. The number of line buffer elements, used to store data, 
should be at least the bus bandwidth to enable burst 
transfers. In addition, the number of stream data queue 
(used to store pending stream elements in a FIFO) is set to 
match the maximum bandwidth of the data path so that the 
stream unit can buffer the proper number of stream elements 
that can be consumed by the data path in a single cycle. 
These settings are chosen so that data continues to stream 
into and out of the stream unit without stalling the bus or 
data path.  

C. RTL constructor 

Table 2. Application Benchmark Details 

Benchmark Name Number 
of nodes 

Description 

Open filter 30 Morphological filter used for edge detection 
Edge detection Filters 67 A graph that combines all the filters used in an edge detection system (open, close and binarize)  
Row DCT 95 Row-wise Discrete Cosine Transform filter  
Color processing  232 Three filters that perform a 3x3 low pass filtering, followed by gamma correction, followed by 

RGB to YUV color space transformation. Used as part of a digital camera image finishing chain 

The RTL constructor reads the HLM representation and 
emits structural Verilog for the data path and the stream 
unit.  

D. Evaluator 
At that point, the evaluation process is done by passing 

the resulting Verilog code through the Xilinx ISE tool-flow. 
We synthesize, and map the design targeting a Xilinx 
Virtex-4 architecture. We evaluate the design in terms of 
clock speed, and area overhead. As we will examine in the 
experimental evaluation, we are able to produce high-
quality accelerators both in terms of area, and clock speed. 

IV. EXPERIMENTAL EVALUATION 
vld (v1) vld (v2)

vadd

vst (v0)

vld (v2) A. Methodology 
This section describes the evaluation of the design 

methodology presented in previous sections. An application 
set, shown in Table 2, is selected from a wide range of media 
applications related to video compression, color processing, 
and image processing. Key compute intensive kernels from 
this application set is chosen for implementation. In all 
cases, these benchmarks are first coded as sDFG, as shown 
as an example in the Figure 2.  

A design automation tool, using the design flow shown 
previously in Figure 3, is implemented in C++. The tool 
accepts each sDFG in the application set to generate 
candidate hardware accelerators according to the template 
shown in Figure 4. Different architectural configurations and 
loop unrolling factor are chosen such that Pareto-optimal 
designs for each benchmark can be chosen.  

 
 

vadd vst (v0) Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 

vld (v1)

vld (v1) vld (v2) vadd vst (v0)

vld (v1) vld (v2) vadd vst (v0)

vld (v1) vld (v2) vadd vst (v0)

vld (v2) vaddvld (v1)

...........................

vst (v0) N

vld (v2) vaddvld (v1)

vld (v2) vadd

vst (v0) Cycle N+

vld (v1) vst (v0) Cycle N+

 

Figure 6. Valid bits allow the scheduler to produce only the 
steady-state code 



 8

Figure 7 shows the synthesis results for the benchmarks 
under several configurations. Each configuration is 
described by a pair of parameter (ci,ui). The ci parameter 
refers to user constraints in terms of maximum number of 
computational resources that the tool can utilize to schedule 
the sDFG. For this experiment, cB corresponds to a very 
wide configuration with an unlimited number of functional 
units while c

B

A corresponds to the intermediate configuration 
with fewer functional units, similar to the RSVP-2™ 
accelerator [8].  

The ui parameter shows the degree of unrolling for the 
sDFG to achieve higher throughput. In wider 
configurations, sDFG unrolling can be an effective means to 
use resources that could otherwise remain unused. 
However, a higher degree of unrolling can strain the bus 
and memory subsystem, which may result in lower or 
negligible speed up. 

The generated hardware is synthesized and mapped onto 
a Xilinx Virtex-4 FPGA, and the quality metrics of the 
produced bitstream (area, clock frequency) are recorded to 
assess  the Pareto-optimality of the design 

B. Discussion 
The results of Figure 7 show the total number of FPGA 

slices for each configuration of each benchmark, and how 
the slices are distributed among the data path and the stream 
interface. The average I/O bandwidth in bytes per cycle 
between the data path and the stream interfaces, and the 
clock frequency  in MHz after synthesis are also indicated at 
the top of each bar. The I/O bandwidth shown is an upper 
limit on the achievable bandwidth between the accelerator 
and the external bus. Some configurations are not shown 

because they require very large amount of I/O bandwidth 
because of the large unrolling factor.  

These results enforce our initial premise that template-
based approach can produce fast and area efficient designs. 
Using a high level representation such as the sDFG allowed 
for quick architectural exploration of different 
configurations (ci,ui). The streaming programming model 
facilitates the selection of sDFG selection and coding. 
Furthermore, it allows for design optimizations of both 
stream and data path, without recoding the benchmark.  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

cA
_u

1

cA
_u

2

cA
_u

4

cB
_u

1

cB
_u

2

cB
_u

4

cA
_u

1

cA
_u

2

cA
_u

4

cB
_u

1

cB
_u

2

cB
_u

4

cA
_u

1

cA
_u

2

cB
_u

1

cB
_u

2

cA
_u

1

cB
_u

1

Open Filter Edge Detection row DCT

Data
Path

Color
processing

Stream
Interface

Sl
ic

es

(0
. 6

7 
/  1

40
)

(1
 / 

14
8)

( 1
.6

 / 
14

8)

( 2
 /  

14
0)

( 4
 / 

14
8)

(8
 / 

13
4)

( 0
.2

9 
/ 1

40
)

( 0
.5

7 
/  1

40
)

(0
. 6

7 
/ 1

40
)

(2
 / 

14
0)

(4
 / 

14
8)

( 8
 /  

13
4)

( 3
. 5

6 
/  1

18
)

( 3
.5

6 
/ 1

08
)

( 3
2 

/ 1
30

)

(6
4,

 1
26

)

(4
. 3

 / 
10

2)

(6
4 

/ 1
48

)

 
Figure 7. Synthesis results for hardware accelerator 

In general, wider designs require more resources because 
the template design requires a larger number of queuing 
elements at the output of each functional unit to store live 
variables at each cycle. On the other hand, wider 
configurations are faster due to the lack of large 
multiplexers at the inputs of the functional units. In all 
cases, the maximum clock frequency is determined by the 
stream interface unit which is slower than the data path. 

V. RELATED WORK 
In this section, we discuss previous work in the areas of 

streaming programming model and streaming architectures, 
architectural automation for ASIC and FPGA design flows, 
and special reconfigurable architectures. 

A. Streaming Programming Model and Architectures 
Using streaming representations to expose concurrency 

and to express data communication explicitly has been 
recognized as an efficient way to both program off-the-shelf 
parallel processors, like graphics chips,  and to architect 
new processors. A thorough analysis of the streaming 
programming model is given in [1], and an example of a 



 9

language (Brook) that describes explicit streaming model 
concepts is detailed in [4]. Example streaming processors 
include Merrimac [12], Raw [30], Cell [19], and RSVP™ 
[8].  

B. Architectural automation for ASICs and FPGAs 
There has been an intense interest in the research 

community in the last decade to automate the architectural 
process for ASIC of FPGA tool flows starting from a high 
level representation like C, Java, Matlab, DFGs and so on 
[10][13]. The following list is a non-exhaustive selection of 
related projects in academia and industry.  

The PICO project incorporated a lot of concepts from 
earlier work on VLIW machines, and described a 
methodology to generate a VLIW engine along with an 
accelerator optimized for a particular application [21][28]. 
Similar projects include the Cyber tool [32], the OCAPI 
[29], the DEFACTO compiler [35], the ASC streaming 
compiler effort [24] in which new explicit constructs have 
to be added to the C language to express streaming 
parallelism, the CASH compiler that maps the complete the 
C application onto asynchronous circuits [31], the Streams-
C compiler 15], and work on Single Assignment C mapping 
to gates [27]. The Impulse-C [25] and Handel-C [37] are 
efforts to utilize C with extensions as a high level RTL 
language for FPGA design. At an even higher level of 
abstraction, the Matlab to gates compiler from AccelChip 
[3] targets mainly DSP kernels on FPGA platforms. In some 
cases, a domain specific language is used to map high level 
abstractions to gates for a particular application domain, 
such as networking [22]. 

Most of the above mentioned approaches use C as a more 
“user-friendly” hardware description language, and they add 
constructs to enhance concurrency, variable bitwidth, and so 
on in order to make C more amenable to hardware design. 
We believe that a template-based architectural automation 
that evaluates a large number of potential designs and focus 
on the most “profitable” parts of the code is able to offer 
both design efficiency in terms of speed and cost, as well as 
programmability for developers that are not well-versed in 
hardware design.  

A related problem is to automatically detect clusters of 
heavily executed assembly-level instructions that can be 
merged and extend the ISA of the processor. This research 
extends to both an ASIC environment [9] for the ARM 
processor, and an FPGA environment for the Altera Nios 
processor [11]. Tensilica [39] and ARC [36] are offering the 
opportunity to extend their base architecture with tightly-
couple processors and to automatically generate compiler 
extensions so that calls to these coprocessors can be 
embedded in the application. 

C. Reconfigurable processors 
A number of academic projects and commercial products 

are tackling the hardware synthesis problem by designing 
efficient compile-time configurable or run-time 
reconfigurable architectures. This effort also stems from the 

fact that off-the-shelf, commercial FPGA architectures have 
little if any support for run-time reconfiguration. The GARP 
[5] and SCORE projects [6][7] propose the addition of 
reconfigurable planes that act as coprocessors of a scalar 
processor (MIPS in the case of Garp). Multiple planes offer 
a very fast context switch mechanism for run-time 
reconfiguration, and allows for virtual compute pages that 
can be mapped on the fabric both spatially and temporally.  

Other projects include the RaPid architecture [14], the 
Chimaera architecture [34], the Piperench architecture [16], 
the RAW/Virtual Wires research [2], the Amalgam project 
[18] and so on.  

Embedding reconfigurable fabric into an otherwise ASIC 
design, also called embedded FPGAs, is a recent trend in 
many commercial offerings. Stretch, Inc. [17] uses the 
Tensilica toolset to generate tightly couple co-processors 
and map them on the Instruction Set Extension Fabric 
(ISEF). Similar ideas come from several start-ups such as 
IPFLex, PACT/XPP [38], SiliconHive, etc.  

Our work is not related to any such proprietary 
architecture, rather it produces hardware code that can 
target any fabric that understands the RTL representation.  

VI. CONCLUSION AND FUTURE WORK 
A design methodology and prototype tool to automate the 

design and architectural exploration of hardware 
accelerators are described in this paper. These accelerators 
are programmed as streaming kernels to map to the 
streaming accelerators. In comparison to other approaches, 
we utilize a well-engineered template to enable fast 
convergence to an area and speed efficient design. We show 
how this methodology is used for an application set with 
various architectural configurations. New streaming 
accelerators are generated without recoding the application 
or re-design of the platform. 

REFERENCES 
[1] Amarasinghe S., Thies B. Architectures, Languages and Compilers 

for the Streaming Domain. Tutorial at the 12th Annual International 
Conference on Parallel Architectures and Compilation Techniques, 
New Orleans, LA 

[2] Babb J., et. al. Parallelizing Applications into Silicon. Proceedings of 
the 7th  IEEE Symposium on Field Custom Computing Machines 
(FCCM), April 1999, Napa Valley, CA 

[3] Banerjee P. et. al.. A MATLAB compiler for distributed, 
heterogeneous, reconfigurable computing systems. Proceedings of the 
IEEE Symposium on Field Custom Computing Machines (FCCM),  
April  17-19, 2000, pp. 39-48, Napa Valley, CA 

[4] Buck I. Current Brook specification (0.2). 
http://merrimac.stanford.edu/brook, October 2003 

[5] Callahan T., Hauser J., Wawrzynek J. The Garp Architecture and C 
Compiler. IEEE Computer Magazine, vol. 33, no. 4, April 2000, pp. 
62-69 

[6] Caspi E., Huang R., Yeh J., Markovskiy Y., DeHon A., Wawrzynek J. 
Stream Computations organized for Reconfigurable Execution 
(SCORE): Introduction and Tutorial.  BRASS research group 
technical report, University of California, Berkeley, August 2000 

[7] Caspi E., DeHon A., Wawrzynek J. A Streaming Multithreaded 
Model. Proceedings of the 3rd Workshop on Media and Stream 



 10

Processors (MSP), in conjunction with the 34th International 
Symposium on Microarchitecture, December 2001, Austin, TX 

[8] Chirisescu S., et. al. The Reconfigurable Streaming Vector Processor, 
RSVP™.  Proceedings of the 36th  International Conference on 
Microarchitecture, December 2003, pp. 141-150, San Diego, CA 

[9] Clark N., Zhong H., and Mahlke S. Processor Acceleration Through 
Automated Instruction Set Customization. Proceedings of the 36th 
International Symposium on Microarchitecture, December 3-5, 2003, 
pp. 129-140,San Diego, CA 

[10] Compton K., Hauck S. Reconfigurable Computing: A Survey of 
Systems and Software.  ACM Computing Surveys, vol. 34, No. 2, 
June 2002, pp. 171-210 

[11] Cong J., Fan Y., Han G. and Zhang Z. Application-Specific 
Instruction Generation for Configurable Processor Architectures. 
Proceedings of the 12th  International Symposium on FPGAs, 
February 2004, pp. 183-189, Monterrey, CA 

[12] Dally W. J., Hanrahan P., Erez M., Knight T. J., Labonté F., Ahn J.H., 
Jayasena N.,  Kapasi U. J., Das A., Gummaraju J., Buck, I. Merrimac: 
Supercomputing with Streams.  Proceedings of the 2003 
Supercomputing Conference, November 2003, pp-35-42, Phoenix, 
AZ 

[13] De Micheli G. Hardware Synthesis from C/C++ models. Proceedings 
of the conference on Design, Automation and Test in Europe 
(DATE), March 1999, pp. 382-383, Munich, Germany 

[14] Ebeling C., Cronquist D., Franklin P., Secosky J., Berg S. Mapping 
Applications to the RaPiD configurable architecture. Proceedings of 
the 5th  IEEE Symposium on Field Custom Computing Machines 
(FCCM), April 16-18, 1997, pp. 106-115, Napa Valley, CA 

[15] Gokhale M.,  Stone J., Arnold J., Kalinowski M. Stream-Oriented 
FPGA computing in the Streams-C High Level Language. 
Proceedings of the 8th  IEEE Symposium on Field Custom 
Computing Machines (FCCM),  April  17-19, 2000, pp. 39-48, Napa 
Valley, CA 

[16] Goldstein S. C. et. al. PipeRench: A Reconfigurable Architecture and 
Compiler. IEEE Computer Magazine, vol. 33, no. 4 April  2000, , pp. 
70-77 

[17] Gonzalez R. Software Configurable Processors Change System 
Design.  Hot Chips XVII, August 15-16, 2005, Palo Alto, CA 

[18] Gottlieb D. B., Cook J. J., Walstrom J. D., Ferrera S,  Wang C. W., 
Carter N. P. Clustered Programmable-Reconfigurable Processors. 
Proceedings of the 1st IEEE International Conference on Field 
Programmable Technology (FPT),  December 2002. 

[19] Gschwind M., Hofstee P., Flachs B., Hopkins M., Watanabe Y., 
Yamazaki T. A novel SIMD architecture for the Cell heterogeneous 
chip-multiprocessors. Hot Chips XVII, August 15-16, 2005, Palo 
Alto, CA 

[20] Hwang C. T., Hsu Y. S., Lin Y. L. PLS: A Scheduler for Pipeline 
Synthesis. IEEE Transactions of Integrated Circuits and Systems, vol. 
12, no. 9, September 1993, pp. 1279-1286 

[21] Kathail V., Aditya S., Schreiber R., Rau B.R., Cronquist D., 
Sivaraman M. PICO: Automatically Designing Custom Computers.  
IEEE Computer Magazine, vol. 35, no. 9, September 2002, pp. 39-47 

[22] Kulkarni ., Brebner G., Schelle G. Mapping a Domain Specific 
Language to a Platform FPGA. Proceedings of the 41st Design 
Automation Conference (DAC), pp.924-927, San Diego, CA 

[23] Lee J., Haralick R., Shapiro L. Morphological Edge Detection.  IEEE 
Journal of Robotics and Automation, vol. 3, issue 2, April 1987 

[24] Mencer O., Pierce D. J.,  Howes L.W., Luk W. Design Space 
Exploration with a Stream Compiler. Proceedings of the IEEE 
International Conference on Field Programmable Technology (FPT), 
December 2003, Tokyo, Japan 

[25] Pellerin D., Thibault S. Practical FPGA Programming in C.  Prentice 
Hall, 2005 

[26] Rau B. R. Iterative Modulo Scheduling. International Journal of 
Parallel Processing, 24:3-64, 1996 

[27] Rinker R., Carter M., Patel A., Chawathe M., Ross C., Hammes J., 
Najjar W., Bohm W. An Automated Process for Compiling Dataflow 
Graphs into Reconfigurable Hardware.  IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems, Volume 9, no. 1, February 
2001, pp. 130-139 

[28] Schreiber R., Aditya S., Mahlke S., Kathail V., Rau B.R., Cronquist 
D., Sivaraman M.  PICO-NPA: High-Level Synthesis of 
Nonprogrammable Hardware Accelerators.  HP Labs Technical 
Report HPL-2001-249, October 5th 2001 

[29] Schaumont P., Vernalde S., Rijnders L., Engels M., Bolsen I. A 
programming environment for the design of complex high speed 
ASICs.  Proceedings of the 35th Design Automation Conference 
(DAC), June 1998, pp. 315-320, San Francisco, CA 

[30] Taylor M. B., et. al. The RAW Microprocessor: A Computational 
Fabric for Software Circuits and General Purpose Programs. IEEE 
Micro Magazine, 22(2), March 2002, pp.25-35 

[31] Vidiu M., Venkataramani , Chelcea T., Goldstein S.C. Spatial 
Computation. Proceedings of the 11th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), October 9-13, 2004, pp. 14- 26, Boston, MA 

[32] Wakabayashi K. and Okamoto T. C-based SoC design flow and EDA 
tools: An ASIC and system vendor perspective. IEEE Transactions on 
Computer-Aided Design, 19(12):1507-1522, December 2000  

[33] Wulf W. A., McKee S. A. Hitting the memory wall: implications of 
the obvious. ACM SIGARCH Computer Architecture News, Vol. 23, 
no. 1, March 1995, pp. 20-24. 

[34] Ye A. Z., Moshovos A., Hauck S., Banerjee P. CHIMAERA: A high-
performance architecture with a tightly-coupled reconfigurable unit.  
Proceedings of the 27th International Symposium on Computer 
Architecture (ISCA), June 2000, pp. 225-235, Vancouver, BC. 

[35] H. Ziegler H., Hall M. Evaluating Heuristics in Automatically 
Mapping Multi-Loop Applications to FPGAs  Proceedings of the 13th  
International Symposium on FPGAs, February 2005, pp. 184-195, 
Monterey, CA 

[36] Architect white Paper, www.arc.com 
[37] Celoxica Corporation, Handel-C language reference manual, 

www.celoxica.com 
[38] PACT Debuts Extreme Processor. Microprocessor Report, October 

9th, 2000 
[39] Automated Configurable Processor Design Flow, White Paper, 

www.tensilica.com 
[40] Virtex-4 FPGA handbook, www.xilinx.com, August 2004 
 
 
 
RSVP™ is a trademark of Motorola Inc. Other product names are the 
property of their respective owner. A patent is pending that claims aspects 
of items and methods described in this paper. 

 


	I. INTRODUCTION
	II. Stream Programming Model
	A. Architecture
	B. Stream Descriptors
	C. Stream Computation

	III. Template-Based Hardware Generation
	A. Architectural template
	B. Architectural Iterator
	C. RTL constructor
	D. Evaluator

	IV. Experimental Evaluation
	A. Methodology
	B. Discussion

	V. Related Work
	A. Streaming Programming Model and Architectures
	B. Architectural automation for ASICs and FPGAs
	C. Reconfigurable processors

	VI. Conclusion and Future Work

